
Bachelor’s Thesis

nova - A New Computer Music

System with a Dataflow Syntax

carried out at the

Design and Assessment of Technology Institute

HCI Group

Vienna University of Technology

under the guidance of

Univ.Ass. Dipl.-Ing. Dr.techn. Martin Pichlmair

by

Tim Blechmann

tim@klingt.org

Matr.Nr. 0526789

Vienna, April 11th, 2008

mailto:tim@klingt.org


2

Abstract

nova is a new computer music system based on a dataflow syntax,

which shares a common subset with Max-like languages like Pure Data,

Max/MSP or jMax. Nevertheless, nova is not just a new implementation

of the Max language, but has been redesigned from scratch in order to

overcome some of its limitations. nova is written in the C++ program-

ming language. The implementation is based on a highly modular object-

oriented design, with the ambition to create a low-latency soft real-time

system in order to avoid interruptions of the audio stream, a strong focus

on parallelization on multi-processor computers, and easy portability to

different platforms. The audio engine is highly optimized for performance

on modern computers, mainly the x86 and x86 64 architecture.

This bachelor’s thesis is structured as follows: The first Section gives

an overview of different computer music systems, with a focus on the

history of Max-like languages. The second Section describes the main

aspects in the design of the nova language, followed by the third Section,

which gives an overview of the software design of the implementation. This

Section is followed by a conclusion and outlook to future developments.
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Table 1: Max-like Computer Music Systems
Started License Platform Features

Patcher 1986 Proprietary Macintosh Messaging, MIDI
Max/FTS 1989 Proprietary NeXT/ISPW Messaging, MIDI, Au-

dio DSP
Max/Opcode 1990 Proprietary Messaging, MIDI
Pure Data 1996 BSD-Style Crossplatform Messaging, MIDI, Au-

dio DSP
Max/MSP 1997 Proprietary Macintosh, Win32 Messaging, MIDI, Au-

dio DSP
jMax 1996 LGPL Crossplatform Messaging, MIDI, Au-

dio DSP

1 Introduction

1.1 Motivation

When I started to work with computers as musical instruments, I became

in involved with computer music systems. However, working with several

systems and knowing that I’m going to work with the computer as my

main instrument in the future, I was looking for a reliable tool to use

for my own musical purposes. As no system that I found was somehow

acceptable, I started to work on nova in summer 2005 with the ambition

to take the strong concepts of existing systems, while being able to rethink

the weak parts.

Since late 2006, I have been using it during live performances.

Nova is a real-time computer music system with a dataflow syntax. It has

many similarities to max-like languages like Pd, Max/MSP or jMax, but

introduces some new concepts to the max-language.

1.2 Max-like Language

Max-like programming languages [Puc02] have been used as computer

music system since the late 1980s, transferring the concept connecting

single units from hardware synthesizer to software. The term ‘Max-like’

is used to describe the common syntax of the systems, listed in Table 1.

1.2.1 Patcher

Patcher was the first incarnation of max-like languages. It was devel-

oped initially developed in 1986 for the realization of Philippe Manoury’s

composition ‘Pluton’ for solo piano & live electronics [Puc02]. It was

able to process MIDI (Musical Instrument Digital Interface) events and
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control the audio synthesis on a Sogitec 4X machine, a multi-processor

workstation for digital signal processing developed at IRCAM (Institut

de Recherche et Coordination Acoustique/Musique) [vS].

1.2.2 Max/FTS & ISPW

The IRCAM Signal Processing Workstation (ISPW) was a designed as the

replacement for the 4X. The development was a collaboration between the

IRCAM and Ariel Corporation, starting in 1989. The ISPW consisted of a

NeXT computer with a extension board of 2 to 24 Intel i860 coprocessors

for signal processing and thus was one of the first computers using general-

purpose processors for real-time signal processing [Puc91b].

The software of the ISPW was consisting of two parts, a NeXTSTEP

based user interface and control engine called Max, and a real-time signal

processing engine called FTS (Faster Than Sound), running on the i860

extension boards. The FTS server could be controlled via Max’s ’tilde’

objects [Puc91a] and Eric Lindemann’s ANIMAL system [Lin90].

1.2.3 Pure Data

In 1996, Miller Puckette started to write Pure Data (Pd) in order to

be able to do a redesign of the Max program. Pd was rewritten from

scratch with a focus on the handling of dynamic data structures, influ-

enced by some concepts from the ANIMAL system [Puc96]. Pure Data

was designed to use two processes, a server process written in the C pro-

gramming language for the message interpreter and signal processing, and

a gui process written in Tcl using the ‘Tk’ toolkit, which are communicat-

ing via network sockets. In contrary to Max/FTS it is designed to work

on uniprocessing computers [Puc96]. Pure Data is free software, released

under the 3-clause BSD License. Pure Data still has a wide user base.

1.2.4 Max/Opcode

Patcher was licensed to Opcode Systems, where it was adapted and ex-

tended by David Zicarelli, who was working at the IRCAM with Miller

Puckette. In 1990, Opcode Systems released Max/Opcode as a commer-

cial software, but was discontinued after a few years [Dé].

1.2.5 Max/MSP

In 1997 Cycling ’74, a company founded by David Zicarelli, release the

commercial software Max/MSP. Max/MSP is based on the original code-
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Table 2: Scripting-based Computer Music Systems
Started License Language

Music N 1957 Assembler, Fortran
CSound 1986 LGPL C
Common Lisp Music late 1980s MIT-Style Common Lisp (see Section 1.3.3)
SuperCollider 1996 GPL C++, SuperCollider
ChucK 2003 GPL C++

base from Max/Opcode, with the additional audio processing package

MSP (Max Signal Processing), which is based on the audio engine of

Pure Data [Puc97]. In 1999 nato.0+55+3d was released as add-on pack-

age for real-time video processing, although development stopped in 2001.

In 2003, Cycling ’74 released the Jitter add-on for real-time video, matrix

and 3d graphics [cyca]. Max/MSP became widely used among computer

musicians.

1.2.6 jMax

The ”Real time systems” group of François Déchelle at IRCAM started

to develop a successor of Max/FTS. The architecture of Max/FTS was

re-engineered in order to split the graphical user interface from the signal

processing engine [DBdC+98b], [Dé]. jMax reused the Max/FTS engine,

while the graphical user interface was written from scratch using the Java

programming language to ease the cross-platform portability [DBdC+98a].

jMax is free software released under the GNU Lesser General Public Li-

cense and it supports the platforms Windows, Mac OS X and Linux.

However it never got used as widely as Pure Data or Max/MSP and it’s

development has been discontinued in 2004.

1.3 Computer Music Systems based on a Script-

ing Language

Another widely used approach for computer music systems is the use of a

text-based language. Table 2 gives a short of the discussed systems.

1.3.1 Music N

The “Music N” computer music languages written by Max Mathews were

the first computer programs to create music and synthesize sounds on a

digital computer. The series started with “Music I” developed at Bell

Labs in 1957. The final and most influential of Mathews Music N lan-
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guages was “Music V”, which was implemented in the late 1960s using

the Fortran programming language instead of assembler and therefor was

more portable to other computers [Mat].

The main concept behind the Music N family of languages is the sep-

aration of ‘orchestra definition’ and ‘score definition’. The ‘orchestra def-

inition’ defines a number of instruments by their the signal and control

flow. It consists of different kind of Unit Generators (ugens), oscillators,

envelope generators, filters and function generators [Pop04]. The ‘score

definition’ consists of some definitions for audio input and output set-

tings, function tables and a note list, where each note is defined by the

instrument identifier and a number of control parameters.

To execute a Music N program, the ‘orchestra definition’ is compiled

and the ‘score definition’ is used to drive the program’s scheduler. The

result is stored in a soundfile that then can be played back in real-time.

It can therefor be seen as a soundfile compiler [Pop04].

Although Music V is not used any more, it influenced many computer

music languages that have been written in the 1980s like “Music 360”,

“Csound”, “CMix” or “SAOL”.

1.3.2 Csound

These days, the only Music V based language, that is still widely used is

Csound. Csound was written at MIT by Barry L. Vercoe based on his

earlier system “Music 360”, it was released in 1986. As the name suggests,

Csound is implemented in the C programming language and therefor runs

on every system, providing a C compiler [Ver07]. Csound follows the Music

V paradigm of splitting ‘score’ and ‘orchestra’ to different files in order to

compile a sound file. Since 1990 Csound had the capabilities to compute

audio in real-time [Bou00]. In addition to writing score files manually, it

became a common practice to generate score files algorithmically using

external tools.

Csound has been widely used in the academic computer music commu-

nity. It is still actively developed, mainly by John ffitch at the University

of Bath. The latest version Csound 5 can be used stand-alone, with front-

ends like “blue” or “cecilia”, as LADSPA or VST plug-in [Ver07, LW07]

and embedded in Max/MSP or Pure Data. It is free software released

under the GNU Lesser General Public License.
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1.3.3 Common Lisp Music

Common Lisp Music (CLM) is a Music-V based synthesis language written

by Bill Schottstaedt at the Center for Computer Research in Music and

Acoustics (CCRMA) at Stanford University. CLM has originally been

implemented in Common Lisp, but was ported to C, Scheme, Ruby and

Forth [Scha]. CLM can be used from a Common Lisp environment, as well

as from the SND sound editor [Schb] or from Common Music, a Common

Lisp based music composition environment [Ama05].

1.3.4 SuperCollider

SuperCollider is a domain-specific scripting language with a real-time

garbage collector. It was written by James McCartney and released in

1996. In 2002, it was released as free software under the GNU General

Public License.

In the contrary to the older Music N based systems, SuperCollider is

based on an object-oriented scripting language with a syntax based on

Smalltalk and C++. The language is used to define instruments (called

‘synthdefs’) and control the audio synthesis [Pop04]. The interpreter for

the SuperCollider language and the SuperCollider server, that does the

audio processing, are separated processes communicating via Open Sound

Control (OSC) [WF97]. The server can be controlled both via classes

written in the SuperCollider language and directly by sending OSC control

messages.

By decoupling synthesis engine and language, it was possible to gen-

erate control events in the background in advance. Several instances of

the SuperCollider server can run on the same machine, to make use of

multiple processors. [McC02]

SuperCollider can be used for both real-time and non-real-time audio

synthesis. The language gives the user a fine-grained control over the

signal graph. The server is designed to support dynamically changes to

the synthesis graph, allocation or deallocation of synthesis modules or

audio buffers [Ama05].

SuperCollider is one of the most widely used computer music systems.

It runs on Mac OS X and Linux, with a port to Windows in an early state

of development.
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Table 3: Comparison of Computer Music Frameworks
Started License Type Application Domain

CLAM 2000 GPL C++ Frame-
work

Music Information Retrieval, Spec-
tral Modeling Synthesis

SndObj 1998 GPL C++ Library General Purpose, Spectral Process-
ing

STK 1995 MIT-Style C++ Library Synthesis
Faust 2002 GPL C++ Code

Generator
Digital Signal Processing

CSL 2002 MIT-Style C++ Library General Purpose

1.3.5 ChucK

ChucK [WC04] is a relatively new computer music language released in

2003 by Ge Wang and Perry Cook at Princeton University. ChucK is free

software, released under the GNU General Public License. It supports

the Windows, Mac OS X and Linux platforms. ChucK is designed as

an on-the-fly programming language, with support for concurrency via a

non-preemptive sample-accurate scheduler. The syntax uses a massively

overloaded operator, the ChucK-operator =>.

1.4 Computer Music Frameworks

This section covers a small number of computer music frameworks, which

are not intended to be used as stand-alone computer music systems, but

rather as building blocks. Table 3 lists the discussed frameworks. A

comparison of their implementation concepts can be found in Table 4.

1.4.1 CLAM

CLAM (C++ Library for Audio and Music) [Ama05] is a high-level C++

framework offering both C++ implementations of algorithms as well as

conceptual models. It was developed at the Music Technology Group of

the Pompeu Fabra University in Barcelona by Xavier Amatriain starting

Table 4: Comparison of Computer Music Frameworks (Features)
Patching Semantics Sample Representation Audio-Rate Controls

CLAM Graphical Patcher,
not in API

Single-Precision No

SndObj Static Single-Precision Object-Specific
STK No Typedef (Double-Precision) Yes
Faust Compiled Single-Precision Yes
CSL Dynamic Typedef (Single-Precision) No
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in 2000 and released under the GNU General Public License. The frame-

work has a focus on the use in music information retrieval and spectral

modeling synthesis.

1.4.2 SndOBJ

SndObj [Laz01] is an object-oriented C++ class library for audio syn-

thesis and processing written by Victor Lazzarini and licensed under the

GNU General Public License. SndObj classes provide a strong encapsula-

tion and modularity, while being portable to different platforms [Ama05].

Among the more than 100 classes, some algorithms for spectral audio pro-

cessing are included. SndObj can be used to easily implement LADSPA or

VST plug-ins, beside that, the SndObj classes can be used from Python.

1.4.3 STK

The Synthesis ToolKit (STK) [CS99] is a C++ class library with a focus

on audio synthesis algorithms. STK was started by Perry Cook in the mid

1990s at CCRMA, Gary Scavone started working with STK in 1997. Most

of the implementations are textbook implementations of the synthesis

algorithms. The classes are processing the signal sample-wise, which is a

computational overhead compared to block-wise processing. STK is free

software, released under a permissive license, although some of the used

algorithms are patented [CS].

1.4.4 Faust

Faust (Functional Audio Stream) is a functional programming language

designed to define block diagrams at Grame [YO02]. Faust programs are

not directly compiled to object code, but to optimized C++ code, which is

automatically vectorized in order to use Altivec or SSE/SSE2 instructions

[NS03]. Faust provides wrapper code to directly use the Faust programs

as stand-alone application, using ALSA or Jack as audio backend with

a Gtk user interface or stand-alone command line application. To use

Faust applications from other programs, plug-in wrapper are provided

for LADSPA, VST, Max/MSP, SuperCollider, Q and Pure Data [AG06,

Gra07].

1.4.5 CSL

The Create Signal Library (CSL, pronounced “Sizzle”) was designed at

the Center for Research in Electronic Art Technology (CREATE) of the
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University of California Santa Barbara mainly by Stephen Travis Pope.

It is an open source, general-purpose audio processing library, written in

object-oriented C++. Its design is somehow similar to STK or SndOBJ

as it is providing reusable C++ classes [STP03]. CSL provides imple-

mentations of algorithms for sound spacialization, including algorithms

for ambisonics, binaural and vector based amplitude panning.
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2 Language Concepts

The language of Nova is based on the max-like languages, mainly Pd and

Max/MSP, but has been redesigned from scratch in order to overcome

their limitations. As a real-time computer music system, it needs to han-

dle to fundamentally different kinds of dataflow networks, controls and

streams [Ama05]. Controls are event-driven, usually but not necessarily

aperiodic and computed at a low rate. The audio signal however is a con-

tinuous stream of samples, computed at a much higher data rate. In the

dataflow model of max-like language like Nova, both audio and control

messages are expressed by the same dataflow graph.

2.1 Nova Scope

The Nova language is using an interpreter to run Nova programs, the Nova

interpreter. Currently, there are two different versions of the interpreter,

a simple command-line program and a gui version with a graphical patch

editor. A Nova program is started, by loading a patch into the interpreter.

Nova patches are state definitions, modelling a certain interpreter state.

The state of the whole interpreter, i.e. the combination of all patches that

are loaded into the same interpreter at the same time are called the Nova

Scope.

2.1.1 Language Elements

In max-like languages canvases are used as a container for objects. Ob-

jects can be primitives (written in C++) or written in the Nova language

itself. Objects that are written in Nova are as well based on canvases.

They are called subpatches, when implemented in the same file, or ab-

stractions, when stored in a separate file. Subpatches and instantiated

abstractions can be seen as nested canvases on their parent canvas. This

hierarchy of canvases is called the patch hierarchy.

Primitive objects are either built into the Nova language or third-party

plugin libraries, that can be loaded into the interpreter at runtime.

Objects have a number of inlets and outlets, which can be used to

connect different objects. Outlets (on the bottom of an object) can be

connected to inlets (on the top of an object). Figure 1 shows a simple

counter in Nova and Pd. When canvases are used as objects, the xlets1

are defined as objects, as shown in Figure 2, where the counter is imple-

1The term ‘xlet’ is used to denote the combination of inlets and outlets
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(a) Nova (b) Pd

Figure 1: A simple counter

mented as subpatch. These objects are inlet and outlet for messages,

and inlet~ and outlet~ for signals.

2.1.2 Class Resolution & Namespaces

Objects are instantiated by creating an object box, with the class name

followed by a list of creation arguments. The resolution of the class name

needs to handle the different kinds of class types (internal & external

objects, abstraction) in a predictable way. Nova provides a hierarchical

class lockup using namespaces, which are denoted by the delimiter ‘.’ (e.g.

list.iter denotes the object ‘iter’ in the namespace ‘list’).

The class name resolution is done in the scope of the patch, where the

object is created. There are three kinds of class hierarchies that are used

for the class-name resolution:

• the global class hierarchy, which contains all registered objects

• the global search paths (property-settings of the nova interpreter)

• the local search paths of the parent patch, which defaults to the

folder containing the parent patch.

While classes in the global class tree hierarchy are are statically regis-

tered into their namespaces, the path-based class lookup takes the filesys-

tem hierarchy into account. In the path-based resolution, an object with

the name myfancysynth.voice~ may resolve to (1) an abstraction ‘voice˜’

in the folder ‘myfancysynth’, to (2) an external object ‘voice˜’ in the folder

‘myfancysynth’, or (3) to an object ‘voice˜’, that is part of the external



2.1 Nova Scope 16

(a) root patch (b) subpatch

Figure 2: A simple counter as subpatch

library ‘myfancysynth’, which is located in the search path. When a class

name is looked up, it can happen, that it resolves to more than one class.

In the case of such a name clash, the instantiation of a class fails to avoid

an undefined behavior of a patch.

2.1.3 Audio & Control Connections

There is a distinction between control and signal xlets, as controls and

signals define two independent dataflow networks. Outlets can provide

either signal or messages, but not both, while certain inlets are able to

handle both types. This way, certain audio objects like oscillators can be

controlled by messages or signals. The type of a connection is therefore

dependent on the type of the source outlet.

2.1.4 Bindable Objects

Nova patches can contain resources, that are shared between different

objects. These shared resources correspond to named variables in other

programming languages. In Nova these objects are called Bindable Ob-

jects, as objects can be bound to these resources. Examples would be

message or signal busses, audio buffers, that are used by sampling objects,

or shared values.

Unlike other max-like languages, where bindable objects are resolved

in the global scope2, Nova provides a way to have fine-grained control of

2Local resources need to be simulated by using globally visible unique symbol
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resource visibility. The resource visibility is dependent on the position of

the resource in the patch hierarchy (see Chapter 2.1.1). When a declare

object is located on a patch, a resource of a specific type is declared

on this point in the patch hierarchy, which is visible on this canvas and

all child canvases. However, this resource can be shadowed by a declare

object of the same name and type somewhere lower in the patch hierarchy.

Objects that try to bind to a specific resource, search for this resource

upwards in the hierarchy. If no resource is found in the hierarchy, a

globally visible resource is used. In order to make sure, that the global

resource is not shadowed by another resource somewhere upwards in the

hierarchy, it is possible to redirect the visibility to the global resource

using declare global.

Certain resources can be allocated implicitly (e.g. message or sig-

nal busses) while others are required to be declared explicitly (e.g. audio

buffers, which need to allocate a certain amount of memory). If no match-

ing resource of an implicit bindable can be found during a binding request,

a globally visible one is allocated and bound. If the same would happen

when binding an explicit bindable, the binding request would fail.

2.1.5 Patch Lifetime & Encapsulation

In max-like dataflow programming, objects are rough equivalents to classes

in object-oriented programming. Although some terms of object-oriented

programming like inheritance or member functions can’t really be applied

to dataflow programming, the concept of constructors and destructors,

that is transparent to the nova language, is very important in order to

be able to maintain large nova patches. The equivalent to constructors

and destructors of patches are loadbang and endbang objects. When a

patch is loaded into the nova interpreter, all loadbang operations will be

executed, the loadbangs on child canvases will be executed before the ones

on the patch. Endbangs are executed before a canvas is unloaded from

the interpreter.

Before the loadbang of a canvas has been executed, no information is

allowed to be passed to the canvas or its child canvases. Instead of that,

messages, that are sent to the canvas will have to be queued until the

loadbangs of this canvas have been executed. The behavior of endbangs

is similar. Messages that are passed to a canvas after the time of the

endbang will be silently ignored.
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2.2 Message Handling

Some computer music systems like SuperCollider or Csound have the no-

tion of a signal-rate, that is used to compute the audio signal, and a lower

control-rate, to control the unit generators at a lower rate in order to

save processing power. Max-like languages use a different concept, which

is related to the ‘messages’. Messages are events containing data, that

are triggered asynchronously but are dispatched synchronously from the

audio scheduler. A control-rate can be simulated by scheduling messages

at a certain rate, though.

2.2.1 Messages as Events

There are different event sources that can trigger events. They can be

divided into user-generated events, like gui-events or events triggered by

an OSC message received from the network, and system-events like timer

events. When an event occurs, it will be passed in a depth-first order to

the objects. In order to force a specific order of execution, one can use

the trigger (abbrev: t) object. Figure 3 shows an example patch with

two ways to print the numbers 1-2-3 to the console.

Figure 3: Message-passing example

All messages, that are triggered by the same event, will be executed

at the same logical time and are synchronous to the audio computation.

This logical time is directly connected to the audio computation and thus

usually driven by the audio hardware. If the handling of the messaging

takes too long, audio dropouts may occur. For more details see Chapter

3.1.
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Messages that are passed through many objects are handled like a

function call stack in other programming languages. It is easily possible

to create a stack overflow. Figure 4 shows an example patch with two

implementations to print the numbers from 0 to 999 to the console, one

implementation using iteration, the other one using recursion.

Figure 4: Recursion vs. Iteration

2.2.2 Messages as Data

Messages are not only triggered events, but also pass data. The supported

data types are simple built-in types, but it is also possible to extend the

type system with complex classes, which can be defined from the C++

interface. One instance of any of these types can be saved in an Atom.

Bang Event without data passing semantics, storage type is ‘none’3

Float Double-precision floating-point number

Symbol Hashed string, intended to be used as message selector

String String data type, usable for efficient string processing

List List of atoms

Pointer Reference to a class instance of the extendable type system

3similar to None in Python
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2.3 Signal Handling

Signals networks are handled quite differently from message networks.

Signals graphs are used to build a linear DSP chain which is used to

compute the signal stream synchronously in blocks of usually 64 samples.

In Nova, it is not allowed to use cycles in signal graphs in order to have

a predictable behavior. If this were not the case, a delay of one block-

size would have to be introduced implicitly and thus would result in an

undefined behavior (or at least difficult to predict). Using audio busses,

cyclic graphs can easily be made acyclic.

Like in other max-like languages, it is possible to run certain parts of

the DSP graph with a different sample-rate (resampling) or signal vector-

size (reblocking) than the rest of the graph. In Max/MSP the objects

poly~, and pfft~ run a patch which is given as object argument in sand-

box which implements resampling/reblocking as well as overlapping for

FFT applications [Cycb]. Pd provides the block~ object, which sets block-

size, up/down-sampling factor and overlapping for a canvas and its child

canvases. block~ (or it’s alias switch~) [Puc] can also be used to suspend

the DSP computation for a canvas and its children.

Nova has the notion of DSP contexts. A DSP context is a suspend-

able part of the DSP graph, which runs at a certain sample-rate factor4,

vector-size factor and overlapping relative to it’s parent context. If a

canvas contains one of the detaching objects switch~ or reblock~, this

canvas and it’s children are running in a DSP context of its own.

Changes to the DSP graph are only effective after the DSP chain has

been resorted, which is done in the background. This has the advantage

of fewer audio dropouts during DSP graph changes, but unfortunately

message and signal objects may not be in sync for the time after the

loading of objects until the synchronization of the root DSP context.

4This is not yet implemented into the DSP graph
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3 Implementation Concepts

The implementation of Nova has been done in C++ instead of C, that has

been used for Max, Pd and jMax. The kernel makes heavy use of the C++

Standard Template Library (STL) and the Boost libraries [boo]. The

software design is completely object-oriented and makes use of template

and template metaprogramming techniques, whenever reasonable.

Nova is a designed to support lowest audio latencies, which has an

influence on several aspects of the implementation. Lowest latencies in

terms of audio processing means, that the vector-size of the DSP engine

can be as low as 64 samples without the occurrence of audio dropouts.

Audio dropouts happen, when the DSP engine can’t deliver the audio data

to the driver before the deadline. For professional audio hardware, the

deadline would be the duration of 64 audio samples. For a sampling rate

of 48000Hz, this would be after 1.33 ms. Thus low-latency audio software

needs to be written as soft real-time system.

Since the schedulers of modern operating systems are not designed

for dispatching threads at such a low latency and suspending the audio

thread is likely to increase the response time so that the deadline would be

missed, the preferred way to implement thread synchronization is using

nonblocking programming techniques like atomic operations or lock-free

data structures and to avoid system calls whenever possible. Chapter 3.11

gives an overview on the framework for lock-free data structures in nova.

Although the processing power of modern personal computers is con-

tinuously increasing, audio processing still adds considerable load to the

CPU. Because of that the audio engine implements some concepts to save

CPU cycles.

3.1 Nova Scope vs. System Scope

For the implementation of nova, the separation into two different scopes

is important, the nova scope and the system scope. The nova scope deals

with the handling of the nova language, as it is exposed to the user, while

the system scope deals with the implementation of the interpreter, which

is invisible to the user of the language.

The nova language is running completely synchronous in a real-time

thread, while the interpreter is implemented asynchronously and is dis-

tributed over a number of threads. The synchronization of system scope

and nova scope needs to make sure, that the asynchronous interpreter is

able to interprete a synchronous language without too much annoyance
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from the side of the language. To achieve this, several paradigms are used:

callback synchronization Instead of maintaining the complete inter-

preter state from the system threads, synchronization operations

are done by injecting callbacks into the real-time thread in order to

make sure that changes to the nova scope are not blocking.

lazy locking If synchronization from system scope to nova scope requires

exclusive access to data structures, the operation will be rescheduled

if acquiring a lock fails. In the case that an operation needs to be

rescheduled, all successfully acquired locks have to be released in

order to avoid deadlocks.

lock-free synchronization Whenever feasible, utilize lock-free data struc-

tures.

From the nova scope, there are two different notions of ‘time’. The

‘logical’ and the ‘physical’ time. The physical time is the time, that

is reported from the operating system and thus is close to the physical

time. More important for the nova language is the ‘logical’ time. The

logical time is directly bound to the audio hardware, so timer events are

dispatched from the scheduler itself (for more details about the scheduler

see Chapter 3.2.2).

3.2 Interpreter

Both parts of the nova language (message and signal processing) are inter-

preted. The interpreter (or virtual machine), is encapsulated into a single

C++ class, the environment, which exports the whole public API of the

nova interpreter as public member functions. The current implementation

only supports one interpreter instance per process. The environment class

is derived from different base classes which provide implementations for

certain aspects of the interpreter like handling loadable nova classes, class

instances, loading patches or managing the DSP graph, only to name the

most important aspects.

3.2.1 Synchronization

The nova interpreter is designed to work highly asynchronous. The crucial

point is the synchronization with the realtime thread, that shouldn’t be

suspended at any time. Traditional synchronization paradigms are using

mutexes or semaphores, in order to guard data structures, that are used

for synchronization purposes. However, the worst-case response times of
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blocking algorithms may be too high which could result in a miss of the

deadline to deliver the audio data to the hardware. Thus the implementa-

tion of nova tries to avoid the use of blocking algorithms for synchroniza-

tion purposes. Most of the synchronization is done by inserting callbacks

into the main loops of the nova threads using a lock-free queue.

Operations that are executed in the real-time thread can have two

kinds of priorities, operations, that may be delayed, and operations, that

need to be completed when they are called. Operations that may be

delayed (e.g. system scope to nova scope synchronization) are able to use

conditional thread locks to guard concurrent data structures. Operations

like generation of symbols need to be completed without delay. In these

cases the use of shared lock-free data structures is required in order to

achieve a real-time safe behavior.

3.2.2 Scheduling

The scheduling of the nova interpreter is done by the audio backend via the

audio driver, which itself is driven by the interrupt of the audio hardware.

Depending on audio hardware and driver, the scheduler ticks occur at a

monotonic rate. The logical time of events, that occur in the nova scope,

is tied to the audio scheduler, which increments the logical time of the

nova interpreter during each scheduler tick. The operations, that occur

during the scheduler tick are described in Figure 5.

3.3 Nova Objects

As already mentioned in Chapter 2.1.2, the resolution of nova objects

knows the notion of namespaces. The interpreter maintains a global class

tree of registered classes and in addition to that provides a runtime class

resolution mechanism.

3.3.1 UUID References to Class Instances

One problem of the implementation is the necessity to refer to nova objects

by a unique identifier. Basically, this needs to be taken care of in order to

solve two problems. The first problem is related to the asynchronous class

instantiation (for more details see Chapter 3.8), which requires a way to

identify a nova class instance somewhere in the scope of the interpreter.

The second problem is the necessity to be able to refer to a nova object

locally on an Objectholder (see Chapter 3.4) at the time of loading and
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GUICallbacks

PreDSPCallbacksDSPTick
TimerDispatching

PostDSPCallbacks
IdleCallbacks

Figure 5: Scheduler Tick

saving of patches5.

In order to solve these problems, nova class instances contain two

unique identifiers, one for the global reference and one for the local. As

unique identifiers UUIDs6 are used. The global uuid can be used to lookup

a nova class instance that is somewhere visible to the interpreter. If a

global uuid of an object cannot be found in the interpreter, it is guarantied

not to be alive. On the contrary to that, local uuids can only be used to

lookup classes that are located on a certain Objectholder and that are

visible from the nova scope. If an object can’t be looked up by a local

identifier, it is guarantied not to be visible from the nova scope, although

it may be visible from the interpreter scope.

3.4 Objectholder and Object Lifetime

Canvases are a model of an Objectholder. An objectholder is a container

for objects of the nova language, objects and subpatches, and connections.

The environment class is a special instance of an objectholder, too, as

it works as a container for the root patches, that are loaded into the

interpreter. It is easy to see, that the objectholder classes of a complex

system of patches models a tree structure of objectholders.

5and in future for proper handling of abstractions
6Universally unique identifier, 128-bit random numbers
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resolveclass
handleunresovedobjectcreation
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addtoobjectholder
executeloadbangs
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notifyclients

failure

success
addtodsptree

Figure 6: Object Lifetime: Object creation

In order to be able to maintain the objectholder hierarchy, the lazy

locking concept is used. Changes to the objectholder are done from the

real-time thread in order to avoid synchronization problems. Whenever

changes to an objectholder are requested, the system will attempt to ac-

quire a lock for it and complete the operation until it succeeds.

3.4.1 Object Memory Management

The memory management of nova objects is a considerable problem, since

objects are shared between multiple threads and serialization of object

lifetime is not always possible. Therefore the nova interpreter is using ref-

erence counting7 to keep track of all visible objects and canvases. Owning

references usually include the Objectholder hierarchy, the DSP graph and

GUI clients. In order to avoid memory management overhead, the actual

object disposal is done from the system thread.

7The implementation uses boost::shared ptr or std::tr1::shared ptr
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finalize
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notifyclientsremovefromdsptree
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Figure 7: Object Lifetime: Object removal
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3.5 Binding System

The basic concept of the use of Bindable Objects has already been de-

scribed in Chapter 2.1.4. The implementation of this Binding System has

to handle several problems:

Resource Lifetime Allocation and cleanup of bindables. Distinction

between the handling of explicit and implicit bindables.

Resource Visibility Visibility of bindables in the patch hierarchy, han-

dling of global and local bindables.

3.5.1 Bindable Resources & Bindable Allocators

Each bindable resource in nova is a class, that is derived from the Bindable

base class, which provides a small interface for it’s symbolic name and

bind/unbind hooks, which are called at the time of binding and can be

overridden from the implementation of a certain resource class. These

hooks are required to implement resources, which need to know about

their clients (e.g. busses).

Bindable resource types are usually referred to by their symbolic name

(e.g. ‘bus’ for message busses). Thus it is necessary to provide the func-

tionality to instantiate a bindable resource depending on their type name.

In nova, this is solved using ‘Bindable Allocators’. When a bindable re-

source type is initialized (this happens at the startup of the interpreter),

an instance of a ‘Bindable Allocator’ is stored in a global ‘Bindable Al-

locator Container’, which provides a mapping from a symbolic name to

a bindable allocator. At the time of resource instantiation, the specific

bindable allocator can be looked up, which then allocates an instance of

the requested resource.

3.5.2 Bindlists

Each Nova patch models the concept of a Bindlist8. A bindlist is one

node in the tree of the bindable hierarchy. The root node of the bindable

hierarchy is the environment itself. Each bindlist contains a dictionary of

bindable types, that maps to a dictionary, which maps from a symbolic

name to a bindable wrapper. This interface is only visible to bindable

objects, though.

8The name ‘list’ has only been used for historic reasons
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3.5.3 Bindable Wrapper

The same bindable resource needs to be located in different parts of the

bindable hierarchy in order to allow the use of the declare global con-

cept. In order to achieve that, the bindable wrappers, an additional

indirection between the bindlists and the bindable resources, have been

introduced. One needs to distinct between differnt kinds of bindable wrap-

pers.

Local Bindable Owners Owner of a resource, that has been declared

explicitly as local resource

Implicit Bindable Owners Owner of a resource, that has been de-

clared implicitly and is thus a global resource

Global Bindable Owners Owner of a resource, that has been declared

explicitly as global resource

Bindable Placeholder Reference to a Global Bindable Owner, that is

located somewhere nested in the bindable hierarchy

Bindable wrappers are completely invisible to the bindable resources

and to the user of the Nova language, but they maintain a list of their

bindable clients.

3.5.4 Bindable Clients

Bindable Clients are objects, that can be bound to bindable resources.

They expose all the functionality, that is needed to acquire or release

bindings to resources as well as changing the binding to another resource.

When a bindable client tries to acquire a resource, it will search for

a matching bindable wrapper upwards in the bindable hierarchy. If this

search succeeds, the client is bound to the found resource. If no resource

is found, the behavior is dependent, if an explicit or an implicit bindable

resource is being searched for. If the resource is an explicit bindable, the

binding request simply fails. In the case of an implicit bindable resource,

a new instance will be allocated, which is then placed to the root node of

the binding hierarchy and thus is visible in the whole scope unless it is

shadowed by a local resource somewhere else in the hierarchy tree.

3.5.5 Bindable Declarators & the Mass Rebinding Prob-

lem

As described above, bindable resources can be declared explicitly some-

where in the bindable hierarchy using the declare object. This object can
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be used to explicitly declare and allocate objects, that otherwise would

be declared implicitly. However there are certain resource types, that

should not be declared explicitly, but are declared using special objects

(e.g. audio buffers, which need to allocated using the object buffer~).

Both the declare object and the special declaring objects are a model

of ‘Bindable Declarators’. Bindable declarators declare bindable resources

which are allocated and located somewhere in the bindable hierarchy. This

leads to a problem, that the visibility of bindable resources can change,

when bindable declarators are added or removed. When a new bindable

declarator is added, it injects a bindable wrapper to the hierarchy, which

shadows all resources of this type and name, that are located upwards

in the hierarchy. This leads to the fact, that all bindable clients, that

are bound to this shadowed resource, need to be rebound in order to

guarantee consistency. The problem is similar, when a bindable declara-

tor is removed. In this case all bindable objects, that are bound to the

corresponding bindable wrapper, need to be rebound.

3.6 Message Concepts

As described in Chapter 2.2, messages are used to pass control data be-

tween objects. All data types that can be used in messages, can be stored

in the atom data type. Messages are emitted from the outlets and handled

by the inlets. Inlets can only handle certain message types. Messages are

always handled actively9 by calling member functions of the object.

3.6.1 Extending the Type System

It is easily possible to extend the built-in type system from the C++ inter-

face by deriving a class from the base class for the extendable type system

(CustomMessageType). Classes of the custom message type are passed by

reference. In order to be able to store custom messages in atoms, they

need to be ‘clonable’ (this is achieved by implementing the virtual member

function CustomMessageType * CustomMessageType::clone(void)).

In the Nova library, OSC messages are implemented using type system

extensions.

9Other max-like languages use the notion of hot and cold inlets, where cold inlets are only
storing the message data [Puc]
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3.7 DSP Graph Concepts

3.7.1 DSP Graph

The DSP graph is a directed acyclic graph. The nodes of the graph

are called Ugenholders, which means, it can provide a Ugen class (Unit

Generator). The edges of the graph are the signal connections between

xlets of nova objects.

In general, there would be two possible implementations for a DSP

graph scheduling, a static scheduling algorithm or a dynamic one. The

dynamic algorithm would imply a dataflow scheduling algorithm, where

nodes can be executed, when all previous nodes have been executed and

a node thus is runnable. The advantage of this approach is the ease

of use in dynamically changing DSP graphs. The static scheduling al-

gorithm requires a runtime compilation step in advance, computing the

one-dimensional DSP chain, which specifies the scheduling order. The

static scheduling algorithm has a better runtime performance, but the

DSP chain generation may introduce an overhead.

The dynamic scheduling algorithm may be suited for small DSP graph

(e.g. for jack graphs10), but as DSP graphs in max-like languages can

easily use several hundreds or thousands of nodes, the scheduling overhead

cannot be neglected. Thus the statical scheduling algorithm is widely used

in computer music systems [Puc91b]. The DSP chain itself is triggered by

the DSP backend (see Chapter 3.2.2). A detailed description of the DSP

chain is given in Chapter 3.7.4.

3.7.2 Ugenholders & Ugens

The distinction between Ugenholders and Ugens is essential for the imple-

mentation of the DSP graph of nova. Each object of the nova language,

that is usable in the signal processing part of nova, is a model of a Ugen-

holder and, as stated above, can provide a ugen class. Both Ugenholders

and Ugens have the concept of ‘ports’, which is the equivalent to signal

xlets for nova objects. While the ports of a Ugenholder are the direct

equivalent to the signal xlets, as they are used to model signal connec-

tions at the scope of the DSP graph, the ports of the Ugens are only

relevant for the generated DSP chain.

At the time of the DSP chain generation, each Ugenholder is requested

to provide a Ugen, that should be used in the DSP chain. The Ugen-

holder is able to select an optimial ugen for the specific situation, mainly

10Jackdmp [SL05] uses a lock-free dynamic dataflow scheduling
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depending on the used vector-size (e.g. for compile-time loop unrolling),

or depending on the state of the DSP graph (e.g. to differentiate between

message-driven and signal-driven oscillators).

3.7.3 DSP Contexts

As a refinement of the DSP graph concept, nova provides the concept of

DSP Contexts. A DSP context is a nested DSP graph, which appears

in the parent DSP graph as a Ugen. DSP contexts can be used to change

some parameters of it’s local DSP graph, such as suspending, reblocking

or overlapping (see Chapter 2.3).

3.7.4 DSP Chain

As mentioned above, the DSP chain is the one-dimensional representation

of the DSP graph, that describes the scheduling order of the ugens of the

graph. The order of execution is simply the topologically sorted DSP

graph.

The DSP chain itself is one of the most performance-sensitive parts

of nova itself. The iteration across over the DSP chain needs to be very

efficient and the data structures, that are stored in the DSP chain itself,

should avoid indirections as much as possible to guarantee a good caching

behavior. But unlike the implementation of the DSP chain of FTS and

Pd [Puc91b], type safety and expressive power add additional constraints

that make the implementation slightly less efficient. The data stored in

the DSP chain for each ugen are references to the ugen, the used memory

blocks, the vector size and a reference to a chain-specific data type.

When the DSP chain is generated, all memory blocks, that are used

by the ugen need to be allocated. In order to minimize the memory trans-

fers, the memory blocks are reused among several ugens. One constrain

is, that the ugens always have the direct access to the memory regions

of the output ports of their predecessors. In order to be able to reuse

the signal vectors of predecessors, a reference count of connected input

blocks per output block is maintained during the chain generation. Using

this heuristic, memory chunks can be allocated in a reasonably efficient

way. Especially, ugens will try to reuse the input signal vectors for their

outputs to have a better memory locality. The signal vectors cannot be

allocated from the memory arbitrarily, but need to be aligned to certain

boundaries. The boundaries have to match two constraints. The first

alingment constrain is necessary for the SIMD operations (see Chapter
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3.10), which usually require a 16 byte alignment. The second constrain is

not a necessary one, but a performance consideration. In order to mini-

mize the utilized cache lines per signal vector, they should be aligned to

cache line boundaries, which (on modern cpus) is usually 64 bytes. This

alignment doesn’t introduce any memory overhead for signal vectors of

more than 16 samples.

When the DSP functions of the ugens are being executed, the memory

regions that this ugen is working on need to be valid. Therefore some

additional ugens are added to the chain explicitly.

Zero Ugens In the case of unconnected signal inlets, one needs to make

sure, that the sample block is correctly wiped to zero. To ensure

this, a shared signal buffer is used, that contains samples, that are

set to zero. If the signal vector size of the specific DSP context is

larger than the size of this shared vector, zero ugens, that clear an

explicitly allocated signal vector are added to the DSP graph.

Add Ugen When multiple signal outlets are connected to one signal

inlet, these signals need to be added implicitly. In this case ugens

have to be added to the DSP chain, that prepare the signal input

port by adding the audio signals of the audio outports. The adding

operations are organized hierarchically, trying to add up to 4 signal

sources at once in order to reduce memory overhead.

Certain signal vectors of unconnected xlets can be shared among dif-

ferent ugens. For unconnected inlets, a shared signal vector of samples,

that are set to zero, is used. In a similar way, unconnected outlets can

share a signal vector to store unneeded data. Only if the vector size of the

DSP context is larger than the shared signal vectors, explicitly allocated

memory has to be used.

The DSP chain generation algorithm itself is a simple graph traversal

algorithm, which is split into two parts. The first part is a simple iteration

over all ugenhoders of the DSP graph to initialize their ugens (see Chapter

3.7.2) and set up the data structures for the output block reference count.

The second part is an actual depth-first graph traversal, building the

actual DSP chain, adding implicit ugens and allocating memory for the

signal vectors.

3.8 Client Concept (GUI Communication)

The nova interpreter itself is completely independent from a graphical

user interface or a graphical patcher. However, it contains the concept of
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observer clients. Observer clients are classes, that can be added to the

interpreter at runtime, and that provide virtual member functions, which

are called in the case of a state change in the nova interpreter. This way,

they can provide the functionality that is needed to write a GUI, while

offering a level of abstraction between the nova interpreter and the user

interface. The communication from the clients to the server works just by

calling the public API of the environment class.

Nova objects do not provide any hard-coded properties for their graph-

ical representation (like size, position, color etc). Instead, they provide a

general purpose dictionary allowing GUI clients to save and restore prop-

erties by their symbolic name.

3.8.1 GUI Object

All objects with a graphical representation are called GUI objects. The

GUI objects are implemented in a way, that separates the graphical repre-

sentation from the functional core. The implementation of the graphical

part is a part of the observer client, while the functional part is written as

ordinary nova object. This implies, that GUI objects can be loaded into

the standalone interpreter without any requirements for the GUI client.

3.8.2 Patcher Prototype

At the moment, there exists only a prototype of a graphical patcher,

which has been implemented using the Python bindings of the QT toolkit.

The implementation of the patcher is split into two parts, a toolkit-

independent wrapper from C++ to Python and a QT-specific Python

part. The main nova classes, that are exposed to the Python are the

abstract observer base class, canvas, object and connection classes and

parts of the environment class (see Chapter 3.2). Beside that, GUI ob-

jects (and their related event classes) need to be exposed in order to write

a toolkit-specific implementation. The Python bindings have been imple-

mented using the Boost.Python framework [boo].

The QT-specific part is completely written in Python, implementing

the observer class and a hierarchy of canvases and object boxes, which

are addressed from the nova engine using UUIDs (see Chapter 3.3.1). For

GUI objects the toolkit-specific implementation must be provided, using

the exposed event classes for communicating with the nova interpreter.

The canvas and object hierarchy is implemented using the “QT Graphics

View Framework”, which has been introduced in QT 4.2 [Tro].
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3.9 Some Implementation Details

This section deals with some minor, but notable implementation concepts.

3.9.1 Shared Constant Resources

Certain resources of the nova interpreter are shared between class in-

stances. In some cases the information can be stored in per-class data

structures, in other cases this is not applicable or feasible (one case would

be hint strings for xlets). In these cases one can make use of nova’s

constant-resource infrastructure. The constant-resource infrastructure is

a set of C++ template classes, that allow resource sharing between in-

stances.

The resources themselves are stored into a global intrusive container,

while each owner just contains a reference to the shared resource in this

global container. The shared resources are reference-counted in order to

ensure the cleanup of the shared resource, when it’s not needed any more.

The access to the global container is threadsafe, but blocking, and thus not

realtime-safe. But the global container is protected by reader-writer locks,

which limits the necessity of the exclusive access by one thread. Since

shared resources in the global container are unique, comparing unique re-

sources is a lightweight operation, as expensive as comparing two pointers.

A similar framework called boost.flyweight has been developed by

Joaqúın M. López Muñoz. While lacking a fine-grained locking infras-

tructure, it is highly customizable and implemented using C++ template

metaprogramming techniques. It has been accepted as Boost library in

January 2008 [boo].

3.9.2 Threading Overview

As nova is a highly multithreaded program, this paragraph is giving an

overview over the threading infrastrucure. There are two types of threads,

running in nova. Nova interpreter threads are mandatory threads for

the interpreter, while object threads are required for providing extra

functionality, that is required by certain nova classes.

System Thread The System Thread handles most operations for the in-

terpreter scope. Mainly, these are class loader operations (e.g. class

resolution or object instantiation) and DSP graph manipulations. In

addition to that, the system thread is used for memory management

purposes (i.e. object deallocations).
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Observer Thread The Observer Thread is a small helper construct to

ease the communication with GUI clients. This thread is used to

notify the registered observer client classes. This way, GUI notifica-

tions can be triggered from the realtime thread, without constraining

the observer client implementations.

Nova Thread The Nova Thread is the thread, that is running the sched-

uler for the nova language (see Chapter 3.2.2). It is either a thread,

that is started from the interpreter or that is started from the audio

backend. The Nova Thread is considered as soft-realtime thread,

meaning that functions, that are called from this thread, should not

be blocking.

Network Thread Nova provides a framework for network communica-

tion. Network communication should be a low-latency operation

although it is usually not real-time safe, which is the reason, why

the networking framework is running in a separate thread.

Python Thread The nova library provides Python scripting objects.

These objects make it possible to write nova classes in the Python

programming language. While Python is a high-level programming

language, it is not a realtime-safe language and thus should not be

called synchronously from the nova thread. The Python objects

therefore use this thread for evaluating Python bytecode. Depend-

ing on the number of instantiated Python scripting objects, multiple

Python threads are required11.

Soundfile Threads Accessing the hard drive for soundfile playback and

recording is not possible in a realtime-safe manner either. Each

object, that wants to read to or from soundfiles has to use a helper

thread for the actual hard drive access and a lock-free ringbuffer for

the communication.

3.9.3 Reusable DSP Framework

Nova provides a reusable DSP framework, that is written with C++ tem-

plates and can be reused from other applications. Some filters of the DSP

framework are available as ladspa plugins [lad]. The DSP classes are de-

signed with reusability in mind. The types that are used for the sample

representation can be selected as template argument. The external sam-

ple type, that is used for the input and output signals, may be different

to the internal sample representation. Other compile-time arguments are

11The current implementation is providing two global Python threads
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specific to DSP classes. They include the maximum amplitude (phasor),

the interpolation precision (wave-table oscillators), parameter interpola-

tion (certain filters) or denormal bashing in feedback loops (IIR filters).

The member function of these classes, that triggers the DSP tick, sup-

ports all signal vector implementations, that provide a sample extractor

function.

3.10 SIMD in DSP Algorithms

Modern CPUs provide special instruction sets for operations that provide

an operation to multiple data of the same type, as they are used when

handling arrays or vectors. These instruction sets are called ‘Single In-

struction Multiple Data’ (SIMD). Since there are SIMD instruction sets,

that provide operations for floating point numbers, which are used to rep-

resent the audio samples in nova, the support of SIMD instructions in

nova provides a big performance gain.

3.10.1 SIMD Hardware

Most modern CPU architectures provide a support for SIMD instructions.

The most widely used architecture is the x86 architecture, which provides

the SSE instruction set [Int] (beginning with the i686 architecture). The

SSE instruction set is also supported on the 64-bit x86 64 architecture.

The SSE instruction set provides operations, working on a special set of

128-bit registers, called xmm registers, which can represent 4 32-bit float-

ing point numbers. The SSE implementation on the i686 architecture

provides 8 xmm registers, while the x86 64 architecture provides 16. SSE

instructions are usually provided in two different variations, one for pro-

cessing single scalars (e.g. addss) and one for processing 4 parallel scalars

(e.g. addps). Traditional implementations require one CPU cycle for the

single scalar operation and two cycles for a parallel scalar operation pro-

cessing 4 scalars. Recent implementations, most notably the Intel Core

architecture, implement the parallel scalar operation in one CPU cycle.

In addition to using additional registers, the SSE architecture requires

the processed memory regions to be aligned to a multiple of 128 bit in

order to efficiently transfer the memory between xmm registers and the

memory.
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3.10.2 Vectorizing Compilers

Generating vectorized code, that makes use of SIMD instructions, is a

difficult problem for compilers. The two essential problems are the prob-

lems of alignment and aliasing. The first problem is, that the compiler

doesn’t have any information about the alignment of memory regions,

except if the memory was allocated on the stack. Traditional pointers

don’t guarantee any alignment, that would be required for the automated

generation of SIMD instructions. The second problem is the aliasing prob-

lem. Seeing two pointers, the compiler doesn’t know, whether they point

to overlapping memory regions or not and thus is not able to generate

vectorized code.

If both problems can be addressed using non-portable, compiler-specific

features, the compiler is theoretically able to generate vectorized code.

3.10.3 Classification of DSP Algorithms

There is a number of DSP algorithms, that can make use of SIMD algo-

rithms. However they are different in the way, the source code needs to

be transformed.

Vector Operations Vector operations are the simplest algorithms to

vectorize. They can be both element-wise vector-vector or vector-

scalar operations. These are the operations, that can be vectorized

by auto-vectorizing compilers.

Vectorizable Branching Operations Vectorizable branching operations

are operations, that need to be reformulated in order to be vector-

izable, as they contain a branch in the original representation in

the (C++) language. These operations include min, max or clip

operations.

Vectorizable Bitmasking Operations Vectorizable bitmasking oper-

ations are operations, that require a bitmask to be used. Example

operations are abs or sign operations or denormal bashing. They

can be trivial bitmasking schemes (like abs), when the result is just

bitwise ored with a bitmask or more complex (like denormal bashing

or sign), where the result needs to be explicitly constructed from

other bitmasks.

Vectorizable Special Operations Some operations are built into the

instruction set as primitive instructions, which are not built into the

(C++) language itself. Some operations are guarantied to be accu-
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rate (e.g. the sqrt function of SSE), while some are only approxi-

mating the value (e.g. rsqrt) and thus would break the generation

of these instructions would break the IEEE specifications for floating

point operations.

Accumulating Operations Accumulating operations are not generat-

ing a vector as output, as the other operations mentioned above, but

accumulate a value of one scalar value. Applications of these oper-

ations are peak-finding or power computation. These algorithms

require two steps. The first step is an iteration across the whole

memory section, accumulating the values to a vector of the size of

one SIMD instruction (4 in the case of SSE). This vector now con-

tains the accumulated values from interleaved vectors of the original

memory section. In the second step, the values of this accumulated

array will need to be accumulated to the resulting scalar.

3.10.4 SIMD in Nova

Nova provides a compile-time abstraction layer for SIMD algorithms. The

only implementation is for the SSE instruction set and is based on compiler

intrinsics, that are available for the C++ compilers from GNU, Intel and

Microsoft. In addition to that, a fallback implementation in standard

C++ in provided.

The SIMD framework provides two classes of implementations. Func-

tions for dynamic vector sizes (which are required to be a multiple of

8) and functions for compile-time defined vector sizes. The second class

of functions requires the vector size to be a multiple of 4 and generates

completely unrolled machine code using the C++ template metaprogram-

ming technique. Although the compile-time loop unrolled code is bigger

than the looping code, the lack of jump instructions and the resulting

linear program flow make the code very CPU-friendly. Depending on the

operation and the vector size, the performance boost can be up to 50 %.

3.10.5 Micro-Benchmarks

On modern CPU architectures the performance gain of SIMD instruc-

tions is quite big. Table 5 shows the results of a micro-benchmark for the

execution time of a plain C++ implemenation, a C++ implementation

with a hand-coded loop unrolling of 8 samples, an SSE implementation

unrolled by 8 samples and a completely unrolled SSE implementation. As

vector-size 64 samples have been used, since that is nova’s default vector-
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size, the memory regions have been aligned to cache line boundaries. The

benchmark was executed on an Intel Core2 Duo T7400 processor on a 32-

bit debian linux system. The benchmark results were obtained using the

oprofile profiler12 and are normalized by the most efficient implementa-

tion. The binary has been compiled with GCC-4.213 at full optimization

and architecture tuning.

Table 5: Benchmarks for vector-size of 64 samples
Operation Plain C++ Unrolled

C++
Unrolled
SIMD

Completely
unrolled
SIMD

copy 6.54 4.76 1.24 1
vector/vector addition 6.08 4.52 1 1.31
vector/scalar addition 7.98 4.05 1.21 1
vector/vector minimum 9.45 9.11 1 1.09
vector/scalar minimum 9.58 14.06 1.63 1
absolute 8.70 3.13 1.37 1
sign 37.77 65.64 6.34 1
denormal bashing 7.58 - 1 1.58
sqrt 3.66 4.47 1.09 1
reciprocal 108 108 1 5.2
peak extraction 9.71 4.65 1 1.97
power summing 11.68 17.26 1 7.28
combined peak extrac-
tion & power summing

4.87 4.75 1 1.01

One can see, that for simple vector operations, a speedup of 4 can easily

be achieved. Similar speedups can be achieved for operations like abs

(bitwise and) or sqrt (built-in opcode), where the only difference to the

compiler-generated code is the parallelization. For branching algorithms

the speedup can be quite big. For simple branching operations (minimum

and maximum), the speedup is bigger than 9 (although the generated

code is free of branches). Bitmasking code (sign or denormal bashing) can

perform significantly better, than the equivalent branching code. SIMD

implementations of accumulating algorithms also perform between a factor

4 and 10 better. Due to the larger code size, the unrolled code may

perform worse than the original code, though. Approximating operations

(like the reciprocal approximation) can outperform their (exact) C++

equivalents by a factor of 100.

12http://oprofile.sourceforge.net/
13http://gcc.gnu.org/

http://oprofile.sourceforge.net/
http://gcc.gnu.org/
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For simple operations, complete loop unrolling can give another per-

formance boost. If the code-size per sample grows too big, the code can

perform worse due to caching behavior. Additional benchmarks show,

that for larger vector sizes complete unrolling usually outperforms the

iterating equivalents.

3.11 Framework for Lockfree Algorithms

Nova provides implementations of a few lock-free data structures, that

are used mainly to ensure the real-time safety of the audio thread. Lock-

free data structures are an area of active research in the last few year, as

they are important in different kinds of applications like real-time or dis-

tributed systems. The important problems of lock-free algorithms are the

requirement for special hardware instructions, the ABA problem, memory

consistency and dynamic memory management.

Nova’s lockfree framework provides generic C++ implementations of

several lock-free data structures. They are implemented with template

programming and template metaprogramming techniques.

3.11.1 Hardware Requirements

On recent CPUs, two different paradigms to write lock-free algorithms

have been implemented [Moi97]. One way is to use “Compare-and-Swap”

(CAS) instructions. CAS atomically compares a memory region with a

value of a register and if this check succeeds, stores another value to this

location. In addition to CAS instructions, which can only work on one

machine word, DCAS instructions provide compare-and-swap operations

for two machine words. Compare-and-swap instructions are implemented

on the x86 and x86 64 architectures.

The second paradigm is to use pairs of “Load-Linked”(LL) / “Store-

Conditional”(SC) instructions. LL instructions load the content of a mem-

ory region to a register. SC tries to store the content of a register to a

memory region. This only succeeds if the content of this memory region

has not been altered since the call to the LL instruction. LL/SC instruc-

tions are implemented on the PPC architecture.

3.11.2 The ABA Problem

The ABA problem [MS98] is one of the most important issues when writ-

ing lock-free algorithms using compare-and-swap. The ABA problem oc-

curs in the situation, when one thread reads the value A, then another
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thread changes this memory region to B and then back to A. When the

first thread tries to update the memory region with a CAS operation, it

finds the value A and thus the CAS succeeds. This may lead to an incor-

rect behavior if the algorithm assumes, that the memory region remained

unchanged. The common solution for the ABA problem is to associate

a counter with the specific memory region that is incremented on every

modification [MS96]. This is the reason, why many lock-free algorithms

require DCAS instructions. LL/SC-based algorithms are immune to the

ABA problem, though.

3.11.3 Memory & Cache Consistency

Memory consistency is an implementation problem of lock-free algorithms.

Both the compiler and the CPU are able to reorder the memory access

[How], which can lead to problems, if an algorithm relies on the order

of different memory accesses. On systems with CPU-specific cache lines,

cache consistency is another problem. Changes to one value, may not nec-

essarily be propagated to the shared memory immediately. To avoid these

problems, memory barriers may have to be used. The lockfree framework

of provides implementations of memory barriers for different platforms.

3.11.4 Dynamic Memory Management

Dynamic memory management of lock-free data structures is a non-trivial

issue in languages without garbage collection like C++. A specific mem-

ory region cannot be returned to the operating system, unless it can be

guaranteed that this memory region will not be accessed any more, i.e.

no other holds a reference. Early solutions were to used a lockfree free-list

as memory pool, never returning memory back to the operating system

[MS96] or to use a reference count [Val95].

In order to avoid the overhead of reference counting, two algorithms

have been developed. Maged Michael developed an algorithm with thread-

specific ‘hazard pointers’ [Mic02b], which only requires atomic read and

write instructions, and Maurice Herlihy, Victor Luchangco and Mark Moir

came up with the ‘Pass the Buck’ algorithm [HLM02]. Two versions of the

‘Pass the Buck’ algorithm has been published, a wait-free version based

on DCAS instructions, and a more efficient CAS-based (but not wait-free)

version [HLMM05].

For the lockfree framework, both versions of the ‘Pass the Buck’ algo-

rithm have been implemented and used for the provided data structures.
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3.11.5 Queue

The most important lock-free data structure in nova is the lockfree queue,

that is used extensively for synchronization purposes. The implementa-

tion of the queue in nova is based on a design by Maged Michael and

Michael Scott [MS96], using the ‘Pass the Buck’ algorithm for memory

reclamation [HLMM05]. Implementation is non-intrusive and generic. It

can be configured to use a freelist to cache its internal data structures.

To ease the use of smart pointers, a template specialization supporting

dequeue operations to smart pointers is provided.

3.11.6 Stack

The lock-free stack is based on a singly-linked list [Tre86], that was ex-

tended in [HLMM05] to use the ‘Pass the Buck’ algorithm for memory

management. The lockfree framework of nova provides two generic imple-

mentations, an intrusive and a non-intrusive one.

3.11.7 List-based Set

A sorted list can be used as a set data structure. Nova uses a list-based

set to implement a lock-free hash table, as described in [Mic02a], which

was adapted to be usable with the ‘Pass the Buck’ algorithm. The generic

set implementation can be configured to use a special comparison function

and a freelist to cache its data structures. The hash table is implementing

a closed hashing, using a lock-free set for chaining the elements.

3.11.8 Low-Level Primitives

To ease the portability of the lock-free data structures, wrapper functions

are provided for the commonly used low-level primitives like memory bar-

riers or compare-and-swap instructions. These wrappers use built-in com-

piler primitives (e.g. for gcc), operating system specific function (e.g. for

Win32 and OS X), and in rare cases assembler code for certain hardware

or blocking emulations.

3.11.9 Utility Classes

Some utility classes are provided by the lockfree framework to ease the

development of lock-free data structures.

atomic int The atomic integer class provides an integer class with an

API similar to the ordinary integer class, but assuring consistency
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using atomic instructions and memory barriers.

atomic ptr The atomic pointer class is a smart pointer class with an

added tag to circumvent the ABA problem (see Chapter 3.11.2 for

details).

pass the buck The pass the buck class implements the ‘Pass the Buck’

algorithm (see Chapter 3.11.4), which is used by several lock-free

data structures, as object-oriented C++ class.

freelist The freelist class provides a caching memory pool, that is used

in some data structures in order to cache reusable internal data

structures.
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4 Discussion and Conclusion

4.1 Conclusion

Although nova has not (yet?) gained a user base, its concepts proved to be

highly powerful. I have been using nova for my own artistic works, both as

a live instrument in more than 20 concerts and as a tool for composition.

Due to the modular design, the components of nova are reusable in other

systems, some code of nova has already been wrapped to be usable from

within SuperCollider or from a LADSPA host.

The performance optimization, which has been an important point

in the design of nova, has paid off. Synthetic benchmarks of the most

common concepts, which are used in computer music applications, showed

a speedup of about 1.84 compared to Pure Data and 1.76 compared to

SuperCollider.

Finding a user base or even developers turned out to be more difficult

than I originally expected. Now, after more than 2.5 years of development

and almost one year of a graphical user interface, nobody tried to use nova,

despite a talk on the Linux Audio Conference 2007 in Berlin. Some people

offered their help in the development, but unfortunately nobody found the

time to really contribute to the source code. I am not completely sure,

what is the reason for that, but my guess is that most people, who are

competent software developers are busy with other projects and thus do

not find the time to contribute to other projects than their own.

4.2 Future Directions

In the future, some concepts of the nova language are likely to change. In

the current approach, control structures and audio synthesis are tightly

coupled and several decisions are made implicitly by the language and are

not exposed to the user. Systems, which are based on a scripting language

like SuperCollider, have some algorithmic advantages. A syntactic way to

access the synthesis core of nova is one of the most challenging parts in

the future development of nova.

4.3 Acknowledgement

I would like to thank Wolfgang Musil and Klaus Filip for their feedback

based on their huge experience with Max/MSP and Dieter Kovacic for

hosting the project website and source repository on his server. Finally I

would like to thank Miller Puckette for writing Pure Data and releasing it



4.3 Acknowledgement 45

as open source software, which greatly influenced the design of nova, and

for his conservative development process, which was the reason for me to

start nova as project independent from Pure Data.



REFERENCES 46

References

[AG06] Y. Orlarey A. Graef, S. Kersten. DSP Programming with

Faust, Q and SuperCollider. In LAC, editor, Linux Audio

Conference 2006, 2006.

[Ama05] X. Amatriain. An Object-Oriented Metamodel for Digital

Signal Processing with a focus on Audio and Music. PhD

thesis, 2005.

[boo] www.boost.org.

[Bou00] R. Boulanger, editor. The Csound Book: Perspectives in

Software Synthesis, Sound Design, Signal Processing,and

Programming. The MIT Press, March 2000.

[CS] Perry R. Cook and Gary P. Scavone. Synthesis ToolKit

Manual.

[CS99] Perry R. Cook and Gary P. Scavone. The Synthesis ToolKit

(STK). In Proceedings of the International Computer Mu-

sic Conference. International Computer Music Association,

1999.

[cyca] http://www.cycling74.com.

[Cycb] Cycling74. MSP Reference Manual.
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